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Event streaming at Netflix

Personalization DE built various data systems that 
power data analytics and ML algorithms.

Real-time Merched Impression (RMI) Flink App:

• Join Impression events with Playback events in 
real-time to attribute plays to impressions.

• Use Cases: Algo training, AB test analysis, etc.
• One of the largest stateful Flink apps at Netflix.
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Event streaming operations

Streaming apps can fail due to various reasons:

• Source / sink failures
• Dependent service failures
• Upstream data changes

After failures, we need to backfill to mitigate 
downstream impact.
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Event streaming operations

Possible types of backfilling needs:

• Correcting wrong data
• Backfilling missing data
• Bootstrapping state
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How should we backfill?
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Option #1: Replaying source events

The easiest way to backfill is by re-running the streaming job to reprocess 
source events from the problematic period.

Challenges

😭 Troubleshooting can take hours or days and source data can expire.
😭 Increasing message queue retention is very expensive.

• Row-based formats (e.g. Avro) have lower compression rate (v.s. Parquet/ORC).
• Low-latency storage solutions (e.g. EBS gp2) are more costly (v.s. S3).
• It would cost Netflix $93M/year to retain 30 days of data generated by all apps.
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🤔 Can we store events somewhere else?
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Netflix’s Keystone1 platform provides a routing service that makes Kafka events available in 
other storage systems, e.g. a data lake for batch processing.

[1] https://netflixtechblog.com/keystone-real-time-stream-processing-platform-a3ee651812a

https://netflixtechblog.com/keystone-real-time-stream-processing-platform-a3ee651812a


Why Data Lake?
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What is a data lake? 

A data lake1 is a central location that stores a large amount of data in its 
native raw format, using a flat architecture and object storage.

• Frameworks: Delta Lake, Apache Iceberg (Netflix’s choice)

Why data lake?

💖 Cost effective: data are stored in compressed formats e.g. Parquet.
💖 Other features: file pruning, schema evolution, engine-agnostic, etc.

11[1] https://databricks.com/discover/data-lakes/introduction

https://databricks.com/discover/data-lakes/introduction


Kafka events stored in an Iceberg table
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Playback Iceberg Table

account_id show_id view_duration __metadata__

98524989 4236781 123 {kafka_ingestion_ts: ...}

87934298 8754782 45 {kafka_ingestion_ts: ...}

79403754 3648295 81 {kafka_ingestion_ts: ...}

... ... ... ...

Playback Kafka Events

{
"account_id":98524989,
"show_id":4236781,
"view_duration_sec": 123,
...

},
{

"account_id":87934298,
"show_title_id":8754782,
"view_duration_sec": 45,
...

},
{

"account_id":79403754,
"show_id":3648295,
"view_duration_sec": 81,
...

},
... 🤔 Can we backfill from the data lake?



Option #2: Lambda Architecture

Build and maintain a batch-based application (e.g. Spark job) that is 
equivalent to the streaming application but reads from Iceberg tables.
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Option #2: Lambda Architecture

Build and maintain a batch-based application (e.g. Spark job) that is 
equivalent to the streaming application but reads from Iceberg tables.

Challenges

😵 Initial development of such batch job can take days or weeks, incl. data 
validation between two different applications.

😵 Continuous engineering efforts to keep the batch app up to date.
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Option #3: Unified batch and streaming
Taking two birds with one stone?

Frameworks

• Apache Flink: offers both batch and streaming modes.
• Apache Beam1: a unified programming model for batch and streaming 

data processing pipelines.

Limitations

😭 Flink requires significant code changes to run batch mode.
😭 Beam only has partial support on state, timers, and watermark2.

15[1] https://beam.apache.org/about/ [2] https://beam.apache.org/documentation/runners/capability-matrix/

https://beam.apache.org/about/
https://beam.apache.org/documentation/runners/capability-matrix/


Backfill Option Comparison
Pros & cons in summary

• Method: Rerun the 
streaming app before 
source data expire.

• Pros: Backfill using the 
same app.

• Cons: Increasing message 
queue retention is 
expensive. 💸💸💸

Rerunning Streaming Job
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• Prerequisite: Use a 
framework with both 
batch & streaming modes.

• Pros: Backfill using the 
batch mode.

• Cons: Might still require 
significant code changes. 
💔💔💔

Unified Batch & 
Streaming 

• Methodology: Maintain an 
equivalent batch app 
reading from a data lake.

• Pros: Low data retention 
cost in data lake.

• Cons: Engineers have to 
maintain two applications 
in parallel. 😰😰😰

Separate Batch Job
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Can we combine the best 
things from all three worlds?



Backfilling
In Kappa Architecture
(feat. Data Lake)
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Backfilling using Data Lake: Goals

• Provide a generic solution that works for all classes of applications

• Minimal code changes to add support

• Scales horizontally to backfill quickly
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Backfilling using Data Lake: Overview
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Backfilling using Data Lake: Overview
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Backfilling using Data Lake: Overview
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Ingesting streaming data into data lake
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hr = 1 hr = 2



Ingesting streaming data into data lake
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(date=20220611, hr=1, batch=1)

hr = 1 hr = 2



(date=20220611, hr=1, batch=2)

Ingesting streaming data into data lake
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(date=20220611, hr=1, batch=1)

hr = 1 hr = 2



(date=20220611, hr=2, batch=1)(date=20220611, hr=1, batch=2)

Ingesting streaming data into data lake
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(date=20220611, hr=1, batch=1)

hr = 1 hr = 2

✔ Batching events results in good compression ratios.
✔ Avoids small file problem.



How to backfill?

• Strawman 1: Read events from files filtered by backfill dates
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Strawman 1: Read events from selected files
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(date=20220611, hr=2, batch=1)(date=20220611, hr=1, batch=2)(date=20220611, hr=1, batch=1)



Strawman 1: Read events from selected files
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Strawman 1: Read events from selected files
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Strawman 1: Read events from selected files
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(date=20220611, hr=2, batch=1)(date=20220611, hr=1, batch=2)(date=20220611, hr=1, batch=1)
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How to backfill?

• Strawman 1: Read events from files filtered by backfill dates

✔   Scales horizontally to backfill quickly
✖   Does not work for all types of applications
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Challenge #1: Applications assume ordering

Example: Application that converts playback events into playback sessions
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datastream (live)

datastream (backfill)

session

session

session

Challenge #1: Applications assume ordering
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datastream (backfill)

Challenge #1: Applications assume ordering

✖ ✖ ✖

✖

✔

✖ ✖
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😭Different ordering leads to different results



Strawman 2: Order all files and read in order

(date=20220611, hr=2, batch=1)(date=20220611, hr=1, batch=2)(date=20220611, hr=1, batch=1)

reader reader reader



Strawman 2: Order all files and read in order

(date=20220611, hr=2, batch=1)(date=20220611, hr=1, batch=2)(date=20220611, hr=1, batch=1)

reader reader reader

datastream

Split assigned



Strawman 2: Order all files and read in order

(date=20220611, hr=2, batch=1)(date=20220611, hr=1, batch=2)(date=20220611, hr=1, batch=1)

reader reader reader

datastream

Split a
ssigned
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(date=20220611, hr=2, batch=1)(date=20220611, hr=1, batch=2)(date=20220611, hr=1, batch=1)

reader reader reader

datastream

Split assigned

Strawman 2: Order all files and read in order



How to backfill?

• Strawman 1: Read events from files filtered by backfill dates

✔   Scales horizontally to backfill quickly
✖   Does not work for all types of applications

• Strawman 2: Order all files and read them in order

✔  Guarantees similar ordering semantics as the live traffic
✖   Does not scale horizontally
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But, not all streaming apps rely 
on strong ordering guarantees.
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Event-Time Semantics

Example: Application that converts playback events into playback sessions
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Event-Time Semantics

Example: Application that converts playback events into playback sessions
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1. Sessions are derived from event timestamps - not ingestion times.
2. Because events can arrive late, applications tolerate lateness. 

event-tim
e



Idea: Use 
lateness 
tolerated by app
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reader reader reader

Solution: Use lateness tolerated by app

T=0..5 T=10..15T=5..10T=0..5 T=5..10T=0..5 T=10..15T=5..10T=0..5 T=5..10
Represents a file that has streaming 

data for minutes 10 to 15.
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reader reader reader

Solution: Use lateness tolerated by app

T=0..5 T=10..15T=5..10T=0..5 T=5..10

Assuming lateness of “10” minutes is okay. 

T=0..5 T=10..15T=5..10T=0..5 T=5..10
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reader reader reader

Solution: Use lateness tolerated by app

T=0..5 T=10..15T=5..10T=0..5 T=5..10

watermark

IW=0 Represents the ingestion 
timestamp up to which live data 

has been fully processed

T=0..5 T=10..15T=5..10T=0..5 T=5..10
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Solution: Use lateness tolerated by app

T=0..5 T=10..15T=5..10T=0..5 T=5..10

watermark

IW=0

Split assigned

Split assigned

reader reader reader

Sp
lit assigned

datastream
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Solution: Use lateness tolerated by app

T=0..5 T=10..15T=5..10T=0..5 T=5..10

watermark

IW=0

reader reader reader

datastream



50

Solution: Use lateness tolerated by app

T=0..5 T=10..15T=5..10T=0..5 T=5..10

watermark

IW=5
Indicates all data up to 5 minutes 

has been processed.

reader reader reader

datastream
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Solution: Use lateness tolerated by app

T=0..5 T=10..15T=5..10T=0..5 T=5..10

watermark

IW=5

reader reader reader

datastream

Sp
lit

 a
ss

ig
ne

d Split assigned



How to backfill?

• Strawman 1: Read events from files filtered by backfill dates

✔   Scales horizontally to backfill quickly
✖   Does not work for all types of applications

• Strawman 2: Order all files and read them in order

✔  Guarantees similar ordering semantics as the live traffic
✖   Does not scale horizontally

• Our Solution: Read files while maintaining lateness constraints

✔  Guarantees ordering that work for the application
✔  Scales horizontally to finish backfill quickly
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Messaging System’s Ordering Guarantees
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• Kafka provides strict ordering of events within a partition.

• Most analytical use-cases (streaming-joins, sessionization) use 
event-time semantics and do not require such stronger guarantees.
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Challenge 2: Reading Multiple Sources

• One source can have significantly way 
more data than the other.

• During backfill, this could lead to a 
watermark skew resulting in state size 
explosion. 

• This can eventually lead to slow 
checkpoints or checkpoint timeouts.
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Solution: Coordinate watermarks

IW=0 IW=0

src3

watermark

IW=0

Global

watermark

IW=0



src2

watermark

src1

watermark
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Solution: Coordinate watermarks

IW=5 IW=5

src3

watermark

IW=0

Global

watermark

IW=0

Communicate watermark updates to the global tracker.
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Solution: Coordinate watermarks

IW=5 IW=5

src3

watermark

IW=10

Global

watermark

IW=5

Global watermark should reflect the slowest source.



src2
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Solution: Coordinate watermarks

IW=5 IW=5

src3

watermark

IW=10

Global

watermark

IW=5

Use the global watermark to find if files can be dispatched 
without violating the ‘lateness’  constraint.



How to backfill?

• Strawman 1: Read events from files filtered by backfill dates

✔   Scales horizontally to backfill quickly
✖   Does not work for all types of applications

• Strawman 2: Order all files and read them in order

✔  Guarantees similar ordering semantics as the live traffic
✖   Does not scale horizontally

• Our Solution: Read files while maintaining lateness constraints

✔  Guarantees ordering that work for the application
✔  Scales horizontally to finish backfill quickly
✔  Alignment across sources to avoid state size explosion
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Adopting Kappa Backfill
Minimal code changes

@SpringBootApplication

class PersonlizationsStreamingApp {

  @Bean

  def flinkJob(

      @Source("impression-source") impressionSource: SourceBuilder[Record[ImpressionEvent]],

      @Source("playback-source") playbackSource: SourceBuilder[Record[PlaybackEvent]],

      @Sink("summary-sink") summarySink: SinkBuilder[ImpressionPlaySummary]) {...}

  @Bean

  def liveImpressionSourceConfigurer(): KafkaSourceConfigurer[Record[ImpressionEvent]] =

    new KafkaSourceConfigurer("live-impression-source", KafkaCirceDeserializer[ImpressionEvent])

}
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Adopting Kappa Backfill
Minimal code changes

@SpringBootApplication

class PersonlizationsStreamingApp {

  @Bean

  def flinkJob(

      @Source("impression-source") impressionSource: SourceBuilder[Record[ImpressionEvent]],

      @Source("playback-source") playbackSource: SourceBuilder[Record[PlaybackEvent]],

      @Sink("summary-sink") summarySink: SinkBuilder[ImpressionPlaySummary]) {...}

  @Bean

  def liveImpressionSourceConfigurer(): KafkaSourceConfigurer[Record[ImpressionEvent]] =

    new KafkaSourceConfigurer("live-impression-source", KafkaCirceDeserializer[ImpressionEvent])

  @Bean

  def backfillImpressionSourceConfigurer(): IcebergSourceConfigurer[Record[ImpressionEvent]] =

    new IcebergSourceConfigurer(

       "backfill-impression-source", 

        Avro.deserializerFactory[ImpressionEvent])

}
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Adopting Kappa Backfill

Note: In-memory representation of the Iceberg source is consistent with the Kafka Source.

Minimal code changes
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@SpringBootApplication

class PersonlizationsStreamingApp {

  @Bean

  def flinkJob(

      @Source("impression-source") impressionSource: SourceBuilder[Record[ImpressionEvent]],

      @Source("playback-source") playbackSource: SourceBuilder[Record[PlaybackEvent]],

      @Sink("summary-sink") summarySink: SinkBuilder[ImpressionPlaySummary]) {...}

  @Bean

  def liveImpressionSourceConfigurer(): KafkaSourceConfigurer[Record[ImpressionEvent]] =

    new KafkaSourceConfigurer("live-impression-source", KafkaCirceDeserializer[ImpressionEvent])

  @Bean

  def backfillImpressionSourceConfigurer(): IcebergSourceConfigurer[Record[ImpressionEvent]] =

    new IcebergSourceConfigurer(

       "backfill-impression-source", 

        Avro.deserializerFactory[ImpressionEvent])

}



Adopting Kappa Backfill
Minimal code changes
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nfflink:

  job.name: rmi-app

  connectors:

    sources:

      impression-source:

        type: dynamic

        selected: live-impression-source

        candidates:

        - live-impression-source

        - backfill-impression-source

      live-impression-source:

        type: kafka

        topics: impressions

        cluster: impressions_cluster

      backfill-impression-source:

        type: iceberg

        database: default

        table: impression_table_name

        max_misalignment_threshold: 15min

App config changes to support backfilling



Adopting Kappa Backfill

Results

• High throughput: processing 24 hours of data takes ~ 5 hours.
• Consistent data quality: backfill output matches 99.9% with prod.

Lessons Learned

• Backfilling window and configs depend on application logic.
• Backfilling job needs tuning (separately from prod job).
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What we learned from backfilling in prod
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Kappa Backfill benefits

👏 Use the same streaming application 
for production and backfilling

👏 Easy to set up

👏 Backfill large historical data quickly

👏 Cost Efficient ($2M/year in Iceberg v.s 
$93M/year in Kafka)
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Thank you
Xinran Waibel
Senior Data Engineer, Netflix

Sundaram Ananthanarayanan
Senior Software Engineer, Netflix



Future work

🚀 Improve CICD workflow for Iceberg backfill.

🚀 Provide support for continuously streaming Iceberg Source for 
applications that do not require sub-second latency.

🚀 Hybrid Streaming - using hybrid Source [FLIP-150] to bootstrap 
applications with historical data and continue streaming real-time data.

🚀 Strict Kafka ordering for CDC apps.
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So what’s next?


