
1

Xinran Waibel
Senior Data Engineer, Netflix

Backfill Streaming
Data Pipelines in
Kappa Architecture

Sundaram Ananthanarayanan
Senior Software Engineer, Netflix

2

Agenda

❖ Why backfill streaming pipelines

❖ Existing approaches

❖ Backfill in Kappa Style using Data Lake

❖ Event ordering challenges

❖ Adopting Kappa backfill

3

Event streaming at Netflix

Personalization DE built various data systems that
power data analytics and ML algorithms.

Real-time Merched Impression (RMI) Flink App:

• Join Impression events with Playback events in
real-time to attribute plays to impressions.

• Use Cases: Algo training, AB test analysis, etc.
• One of the largest stateful Flink apps at Netflix.

4

Impression
Source

KeyBy

Join

Playback
Source

KeyBy

RMI Sink

Event streaming operations

Streaming apps can fail due to various reasons:

• Source / sink failures
• Dependent service failures
• Upstream data changes

After failures, we need to backfill to mitigate
downstream impact.

5

Event streaming operations

Possible types of backfilling needs:

• Correcting wrong data
• Backfilling missing data
• Bootstrapping state

6

How should we backfill?

7

Option #1: Replaying source events

The easiest way to backfill is by re-running the streaming job to reprocess
source events from the problematic period.

Challenges

😭 Troubleshooting can take hours or days and source data can expire.
😭 Increasing message queue retention is very expensive.

• Row-based formats (e.g. Avro) have lower compression rate (v.s. Parquet/ORC).
• Low-latency storage solutions (e.g. EBS gp2) are more costly (v.s. S3).
• It would cost Netflix $93M/year to retain 30 days of data generated by all apps.

8

🤔 Can we store events somewhere else?

9

Netflix’s Keystone1 platform provides a routing service that makes Kafka events available in
other storage systems, e.g. a data lake for batch processing.

[1] https://netflixtechblog.com/keystone-real-time-stream-processing-platform-a3ee651812a

https://netflixtechblog.com/keystone-real-time-stream-processing-platform-a3ee651812a

Why Data Lake?

10

What is a data lake?

A data lake1 is a central location that stores a large amount of data in its
native raw format, using a flat architecture and object storage.

• Frameworks: Delta Lake, Apache Iceberg (Netflix’s choice)

Why data lake?

💖 Cost effective: data are stored in compressed formats e.g. Parquet.
💖 Other features: file pruning, schema evolution, engine-agnostic, etc.

11[1] https://databricks.com/discover/data-lakes/introduction

https://databricks.com/discover/data-lakes/introduction

Kafka events stored in an Iceberg table

12

Playback Iceberg Table

account_id show_id view_duration __metadata__

98524989 4236781 123 {kafka_ingestion_ts: ...}

87934298 8754782 45 {kafka_ingestion_ts: ...}

79403754 3648295 81 {kafka_ingestion_ts: ...}

...

Playback Kafka Events

{
"account_id":98524989,
"show_id":4236781,
"view_duration_sec": 123,
...

},
{

"account_id":87934298,
"show_title_id":8754782,
"view_duration_sec": 45,
...

},
{

"account_id":79403754,
"show_id":3648295,
"view_duration_sec": 81,
...

},
... 🤔 Can we backfill from the data lake?

Option #2: Lambda Architecture

Build and maintain a batch-based application (e.g. Spark job) that is
equivalent to the streaming application but reads from Iceberg tables.

13

Real-time
Source

Data Lake
Source

Batch App
(Backfill)

Output

Streaming App
(Prod)

Option #2: Lambda Architecture

Build and maintain a batch-based application (e.g. Spark job) that is
equivalent to the streaming application but reads from Iceberg tables.

Challenges

😵 Initial development of such batch job can take days or weeks, incl. data
validation between two different applications.

😵 Continuous engineering efforts to keep the batch app up to date.

14

Option #3: Unified batch and streaming
Taking two birds with one stone?

Frameworks

• Apache Flink: offers both batch and streaming modes.
• Apache Beam1: a unified programming model for batch and streaming

data processing pipelines.

Limitations

😭 Flink requires significant code changes to run batch mode.
😭 Beam only has partial support on state, timers, and watermark2.

15[1] https://beam.apache.org/about/ [2] https://beam.apache.org/documentation/runners/capability-matrix/

https://beam.apache.org/about/
https://beam.apache.org/documentation/runners/capability-matrix/

Backfill Option Comparison
Pros & cons in summary

• Method: Rerun the
streaming app before
source data expire.

• Pros: Backfill using the
same app.

• Cons: Increasing message
queue retention is
expensive. 💸💸💸

Rerunning Streaming Job

16

• Prerequisite: Use a
framework with both
batch & streaming modes.

• Pros: Backfill using the
batch mode.

• Cons: Might still require
significant code changes.
💔💔💔

Unified Batch &
Streaming

• Methodology: Maintain an
equivalent batch app
reading from a data lake.

• Pros: Low data retention
cost in data lake.

• Cons: Engineers have to
maintain two applications
in parallel. 😰😰😰

Separate Batch Job

17

Can we combine the best
things from all three worlds?

Backfilling
In Kappa Architecture
(feat. Data Lake)

18

Backfilling using Data Lake: Goals

• Provide a generic solution that works for all classes of applications

• Minimal code changes to add support

• Scales horizontally to backfill quickly

19

Backfilling using Data Lake: Overview

20

Sink

live source
(optimized for latency)

streaming job

data lake
(optimized for throughput)

Backfilling using Data Lake: Overview

21

Semantics

Recent Past

Sink

Handling real-time data

Backfilling using Data Lake: Overview

22

Semantics

Sink

Backfilling

Distant Past Recent Past

Ingesting streaming data into data lake

23

hr = 1 hr = 2

Ingesting streaming data into data lake

24

(date=20220611, hr=1, batch=1)

hr = 1 hr = 2

(date=20220611, hr=1, batch=2)

Ingesting streaming data into data lake

25

(date=20220611, hr=1, batch=1)

hr = 1 hr = 2

(date=20220611, hr=2, batch=1)(date=20220611, hr=1, batch=2)

Ingesting streaming data into data lake

26

(date=20220611, hr=1, batch=1)

hr = 1 hr = 2

✔ Batching events results in good compression ratios.
✔ Avoids small file problem.

How to backfill?

• Strawman 1: Read events from files filtered by backfill dates

27

Strawman 1: Read events from selected files

28

(date=20220611, hr=2, batch=1)(date=20220611, hr=1, batch=2)(date=20220611, hr=1, batch=1)

Strawman 1: Read events from selected files

29

(date=20220611, hr=2, batch=1)(date=20220611, hr=1, batch=2)(date=20220611, hr=1, batch=1)

reader reader reader

datastream

Strawman 1: Read events from selected files

30

(date=20220611, hr=2, batch=1)(date=20220611, hr=1, batch=2)(date=20220611, hr=1, batch=1)

reader reader reader

datastream

Split a
ssigned

Split assigned

Strawman 1: Read events from selected files

31

(date=20220611, hr=2, batch=1)(date=20220611, hr=1, batch=2)(date=20220611, hr=1, batch=1)

reader reader reader

datastream

How to backfill?

• Strawman 1: Read events from files filtered by backfill dates

✔ Scales horizontally to backfill quickly
✖ Does not work for all types of applications

32

Playback
Source

keyBy

Sessionizer

Playback
Session Sink

session

session

session

Challenge #1: Applications assume ordering

Example: Application that converts playback events into playback sessions

33

datastream (live)

datastream (backfill)

session

session

session

Challenge #1: Applications assume ordering

34

Playback
Source

keyBy

Sessionizer

Playback
Session Sink

datastream (backfill)

Challenge #1: Applications assume ordering

✖ ✖ ✖

✖

✔

✖ ✖

35

datastream (live)

session

session

session Playback
Source

keyBy

Sessionizer

Playback
Session Sink

😭Different ordering leads to different results

Strawman 2: Order all files and read in order

(date=20220611, hr=2, batch=1)(date=20220611, hr=1, batch=2)(date=20220611, hr=1, batch=1)

reader reader reader

Strawman 2: Order all files and read in order

(date=20220611, hr=2, batch=1)(date=20220611, hr=1, batch=2)(date=20220611, hr=1, batch=1)

reader reader reader

datastream

Split assigned

Strawman 2: Order all files and read in order

(date=20220611, hr=2, batch=1)(date=20220611, hr=1, batch=2)(date=20220611, hr=1, batch=1)

reader reader reader

datastream

Split a
ssigned

39

(date=20220611, hr=2, batch=1)(date=20220611, hr=1, batch=2)(date=20220611, hr=1, batch=1)

reader reader reader

datastream

Split assigned

Strawman 2: Order all files and read in order

How to backfill?

• Strawman 1: Read events from files filtered by backfill dates

✔ Scales horizontally to backfill quickly
✖ Does not work for all types of applications

• Strawman 2: Order all files and read them in order

✔ Guarantees similar ordering semantics as the live traffic
✖ Does not scale horizontally

40

41

But, not all streaming apps rely
on strong ordering guarantees.

Playback
Source

keyBy

Sessionizer

Playback
Session Sink

session

session

session

Event-Time Semantics

Example: Application that converts playback events into playback sessions

42

Playback
Source

keyBy

Sessionizer

Playback
Session Sink

session

session

session

Event-Time Semantics

Example: Application that converts playback events into playback sessions

43

1. Sessions are derived from event timestamps - not ingestion times.
2. Because events can arrive late, applications tolerate lateness.

event-tim
e

Idea: Use
lateness
tolerated by app

44

45

reader reader reader

Solution: Use lateness tolerated by app

T=0..5 T=10..15T=5..10T=0..5 T=5..10T=0..5 T=10..15T=5..10T=0..5 T=5..10
Represents a file that has streaming

data for minutes 10 to 15.

46

reader reader reader

Solution: Use lateness tolerated by app

T=0..5 T=10..15T=5..10T=0..5 T=5..10

Assuming lateness of “10” minutes is okay.

T=0..5 T=10..15T=5..10T=0..5 T=5..10

47

reader reader reader

Solution: Use lateness tolerated by app

T=0..5 T=10..15T=5..10T=0..5 T=5..10

watermark

IW=0 Represents the ingestion
timestamp up to which live data

has been fully processed

T=0..5 T=10..15T=5..10T=0..5 T=5..10

48

Solution: Use lateness tolerated by app

T=0..5 T=10..15T=5..10T=0..5 T=5..10

watermark

IW=0

Split assigned

Split assigned

reader reader reader

Sp
lit assigned

datastream

49

Solution: Use lateness tolerated by app

T=0..5 T=10..15T=5..10T=0..5 T=5..10

watermark

IW=0

reader reader reader

datastream

50

Solution: Use lateness tolerated by app

T=0..5 T=10..15T=5..10T=0..5 T=5..10

watermark

IW=5
Indicates all data up to 5 minutes

has been processed.

reader reader reader

datastream

51

Solution: Use lateness tolerated by app

T=0..5 T=10..15T=5..10T=0..5 T=5..10

watermark

IW=5

reader reader reader

datastream

Sp
lit

 a
ss

ig
ne

d Split assigned

How to backfill?

• Strawman 1: Read events from files filtered by backfill dates

✔ Scales horizontally to backfill quickly
✖ Does not work for all types of applications

• Strawman 2: Order all files and read them in order

✔ Guarantees similar ordering semantics as the live traffic
✖ Does not scale horizontally

• Our Solution: Read files while maintaining lateness constraints

✔ Guarantees ordering that work for the application
✔ Scales horizontally to finish backfill quickly

52

Messaging System’s Ordering Guarantees

53

• Kafka provides strict ordering of events within a partition.

• Most analytical use-cases (streaming-joins, sessionization) use
event-time semantics and do not require such stronger guarantees.

Playback
Source

keyBy

Joiner

Sink

Impression
Source

keyBy

Challenge 2: Reading Multiple Sources

• One source can have significantly way
more data than the other.

• During backfill, this could lead to a
watermark skew resulting in state size
explosion.

• This can eventually lead to slow
checkpoints or checkpoint timeouts.

54

src2

watermark

src1

watermark

55

Solution: Coordinate watermarks

IW=0 IW=0

src3

watermark

IW=0

Global

watermark

IW=0

src2

watermark

src1

watermark

56

Solution: Coordinate watermarks

IW=5 IW=5

src3

watermark

IW=0

Global

watermark

IW=0

Communicate watermark updates to the global tracker.

src2

watermark

src1

watermark

57

Solution: Coordinate watermarks

IW=5 IW=5

src3

watermark

IW=10

Global

watermark

IW=5

Global watermark should reflect the slowest source.

src2

watermark

src1

watermark

58

Solution: Coordinate watermarks

IW=5 IW=5

src3

watermark

IW=10

Global

watermark

IW=5

Use the global watermark to find if files can be dispatched
without violating the ‘lateness’ constraint.

How to backfill?

• Strawman 1: Read events from files filtered by backfill dates

✔ Scales horizontally to backfill quickly
✖ Does not work for all types of applications

• Strawman 2: Order all files and read them in order

✔ Guarantees similar ordering semantics as the live traffic
✖ Does not scale horizontally

• Our Solution: Read files while maintaining lateness constraints

✔ Guarantees ordering that work for the application
✔ Scales horizontally to finish backfill quickly
✔ Alignment across sources to avoid state size explosion

59

60

Agenda

❖ Why backfill streaming pipelines

❖ Existing approaches

❖ Backfill in Kappa Style using Data Lake

❖ Event ordering challenges

❖ Adopting Kappa backfill

Impression
Kafka Topic

Playback
Kafka Topic

Impression
Iceberg Table

Playback
Iceberg Table

RMI Flink Application

Production
Stack

Backfill Stack

RMI Output
Kafka Topic

RMI Output
Iceberg Table

Adopting Kappa Backfill

Adopting Kappa Backfill
Minimal code changes

@SpringBootApplication

class PersonlizationsStreamingApp {

 @Bean

 def flinkJob(

 @Source("impression-source") impressionSource: SourceBuilder[Record[ImpressionEvent]],

 @Source("playback-source") playbackSource: SourceBuilder[Record[PlaybackEvent]],

 @Sink("summary-sink") summarySink: SinkBuilder[ImpressionPlaySummary]) {...}

 @Bean

 def liveImpressionSourceConfigurer(): KafkaSourceConfigurer[Record[ImpressionEvent]] =

 new KafkaSourceConfigurer("live-impression-source", KafkaCirceDeserializer[ImpressionEvent])

}

62

Adopting Kappa Backfill
Minimal code changes

@SpringBootApplication

class PersonlizationsStreamingApp {

 @Bean

 def flinkJob(

 @Source("impression-source") impressionSource: SourceBuilder[Record[ImpressionEvent]],

 @Source("playback-source") playbackSource: SourceBuilder[Record[PlaybackEvent]],

 @Sink("summary-sink") summarySink: SinkBuilder[ImpressionPlaySummary]) {...}

 @Bean

 def liveImpressionSourceConfigurer(): KafkaSourceConfigurer[Record[ImpressionEvent]] =

 new KafkaSourceConfigurer("live-impression-source", KafkaCirceDeserializer[ImpressionEvent])

 @Bean

 def backfillImpressionSourceConfigurer(): IcebergSourceConfigurer[Record[ImpressionEvent]] =

 new IcebergSourceConfigurer(

 "backfill-impression-source",

 Avro.deserializerFactory[ImpressionEvent])

}

63

Adopting Kappa Backfill

Note: In-memory representation of the Iceberg source is consistent with the Kafka Source.

Minimal code changes

64

@SpringBootApplication

class PersonlizationsStreamingApp {

 @Bean

 def flinkJob(

 @Source("impression-source") impressionSource: SourceBuilder[Record[ImpressionEvent]],

 @Source("playback-source") playbackSource: SourceBuilder[Record[PlaybackEvent]],

 @Sink("summary-sink") summarySink: SinkBuilder[ImpressionPlaySummary]) {...}

 @Bean

 def liveImpressionSourceConfigurer(): KafkaSourceConfigurer[Record[ImpressionEvent]] =

 new KafkaSourceConfigurer("live-impression-source", KafkaCirceDeserializer[ImpressionEvent])

 @Bean

 def backfillImpressionSourceConfigurer(): IcebergSourceConfigurer[Record[ImpressionEvent]] =

 new IcebergSourceConfigurer(

 "backfill-impression-source",

 Avro.deserializerFactory[ImpressionEvent])

}

Adopting Kappa Backfill
Minimal code changes

65

nfflink:

 job.name: rmi-app

 connectors:

 sources:

 impression-source:

 type: dynamic

 selected: live-impression-source

 candidates:

 - live-impression-source

 - backfill-impression-source

 live-impression-source:

 type: kafka

 topics: impressions

 cluster: impressions_cluster

 backfill-impression-source:

 type: iceberg

 database: default

 table: impression_table_name

 max_misalignment_threshold: 15min

App config changes to support backfilling

Adopting Kappa Backfill

Results

• High throughput: processing 24 hours of data takes ~ 5 hours.
• Consistent data quality: backfill output matches 99.9% with prod.

Lessons Learned

• Backfilling window and configs depend on application logic.
• Backfilling job needs tuning (separately from prod job).

66

What we learned from backfilling in prod

67

Kappa Backfill benefits

👏 Use the same streaming application
for production and backfilling

👏 Easy to set up

👏 Backfill large historical data quickly

👏 Cost Efficient ($2M/year in Iceberg v.s
$93M/year in Kafka)

68

Thank you
Xinran Waibel
Senior Data Engineer, Netflix

Sundaram Ananthanarayanan
Senior Software Engineer, Netflix

Future work

🚀 Improve CICD workflow for Iceberg backfill.

🚀 Provide support for continuously streaming Iceberg Source for
applications that do not require sub-second latency.

🚀 Hybrid Streaming - using hybrid Source [FLIP-150] to bootstrap
applications with historical data and continue streaming real-time data.

🚀 Strict Kafka ordering for CDC apps.

69

So what’s next?

