
Keeping Master Green at Scale
Sundaram Ananthanarayanan, Masoud Saeida Ardekani, Denis Haenikel, 

Balaji Varadarajan, Simon Soriano, Dhaval Patel, Ali-Reza Adl-Tabatabai
(https://eng.uber.com/research/keeping-master-green-at-scale/)

https://eng.uber.com/research/keeping-master-green-at-scale/


• Single, shared repo hosting companies’ software assets

Advantages of a Monorepo [Ciera et al. @ICSE’18]

✔  Simplified Dependency Management
✔  Improved Code Visibility 

Monorepo is popular!

Multirepo

Monorepo!



• Monorepos handle a huge volume of commits every day

• Existing CI workflows do not guarantee an always green master
‐ Too hard at scale

• Submit Queue guarantees an always-green master at scale

Always green master considered hard



01 Why green master is hard

02 Probabilistic Speculation

03 Conflict Analyzer

04 Evaluation

Outline



Monorepo

Developer

Change

Revision

CI 
Server

BUILD

TEST

RESULT

Developer

Lifecycle of a change in monorepo

Change

Revision Peer Review

✅

Change

Revision



Challenge: Concurrent conflicting changes

master

C1

Alice

C2

Bob



Challenge: Concurrent conflicting changes

C1
master

C1 C2

Alice Bob

C2

build steps fail



Example of a real conflict



How often conflicts happen?



How often conflicts happen?

Observation: Chances of a conflict ↑ from 5% to 40% as #. of concurrent &  
potentially conflicting changes ↑



Delayed rollouts Hampered Productivity Complex rollbacks

Drawbacks of a red master



Keeping master green: Queue

Alice, Bob, Carol enqueue changes they want to commit

master

Alice

Bob

H

C3 C2 C1

Carol



Keeping master green: Queue

master

Alice

Bob

H

C3 C2 C1

Carol

C1 is built and tested against mainline head (H).



Keeping master green: Queue

Build steps for H ⊕ C1 succeed.

master

Alice

Bob

H

C3 C2 C1

Carol



Keeping master green: Queue

C1 is committed and it becomes the head. C2 is tested against it.

master

Alice

Bob
C3 C2

Carol

H



Keeping master green: Queue

Build steps for H ⊕ C2 fails and C2 is rejected.

master

Alice

Bob

H

C3 C2

Carol

H



Keeping master green: Queue

✔ Guarantees an always green master by serializing changes
✖  Does not scale to 1000s of changes/day

master

Alice

Bob

H

C3

Carol

H



Keeping master green: Batching changes

C1 and C2 are batched and build steps are run.

`

master

Alice

Bob

H

C3 C2 C1

Carol



`

Keeping master green: Batching changes

master

Alice

Bob

H

C3 C2 C1

Carol

✔ Improves the throughput if batches succeed more often than not
✖  Testing batches masks intermediate changes that fail
✖  Batches will fail often as the size of the batch increases

What happens when batches fail?



Challenge: how to do this at scale? (1000s of commits/day)

Keeping master green: Goals

Guarantee serializability

• Illusion of a single queue when committing 

changes

• Git only offers serializability of patches

Provide reasonable SLAs

• Overheads should be short enough for 

developers to trade speed for correctness!



Submit Queue: Overview

Speculation Engine
• Speculates on success/failure 

of changes

• Builds speculation graph

Conflict Analyzer
• Determines independent 

changes

• Constructs conflict graph

Planner Engine
• Selects most valuable builds 

from speculation engine

• Execute builds and commit 

changes



Speculation Tree

C3 C2 C1

C1, C2, C3 - pending changes



Speculation Tree

B1C3 C2 C1 B1: Build Steps for H ⨁ C1



Speculation Tree

B1C3 C2 C1

1. Precompute the outcome of committing C2 under different realities
2. Commit or reject C2 based on the outcome of B1 and one of {B2, B1.2}

B1.2B2

B1 fails → C1 rejected B1 succeeds → C1 commits

B1.2 : Build C2 against (H ⨁ C1)B2: Build Steps for H ⨁ C2



Speculation Tree

Challenge: Which builds to run?

B1

B1.2B2

B1.2.3B3 B2.3 B1.3

B2 fails → C2 rejected

B2 succeeds → C2 commits
B1.2 fails → C2 rejected

B1.2 succeeds → C2 commits

B1 fails → C1 rejected B1 succeeds → C1 commits

C3 C2 C1



Approach #1: Speculate Them All

Speculate on all possible outcomes equally
● Selects builds in a breadth-first order

B1

B12

B123

B2

B3 B23 B13

C3 C2 C1

Does not scale for 1000s of changes/day
● Need to run 2n builds in parallel to commit ‘n’ changes

Leads to substantial waste of resources



Speculate Them All: Resource Wastage

B1

B12

B123

B2

B3 B23 B13

C3 C2 C1



Speculate Them All: Observation

If we select and execute builds whose outcomes are most likely 

to be needed, then we require only n (out of 2n) builds.

Challenge: Which ‘n’ builds are likely to be needed?



Probabilistic Speculation

represents the prob. the result of the build BC is used to make to commit/reject C.

B1

B1.2

B1.2.3

B2

B3 B2.3 B1.3



Probabilistic Speculation

Root B1 is always needed as is used to determine if C1 can be committed

B1

B1.2

B1.2.3

B2

B3 B2.3 B1.3



Probabilistic Speculation

represents the prob. that change C1 succeeds individually

B1

B1.2

B1.2.3

B2

B3 B2.3 B1.3



Probabilistic Speculation

represents the prob. that change C1 succeeds individually

B1

B1.2

B1.2.3

B2

B3 B2.3 B1.3



Probabilistic Speculation

represents the prob. that C2 conflicts with C1

B1

B1.2

B1.2.3

B2

B3 B2.3 B1.3

B1.2 : Build C2 against (H ⨁ C1)



Probabilistic Speculation

B1

B1.2

B1.2.3

B2

B3 B2.3 B1.3



Probabilistic Speculation: Summary

Choose most valuable builds by determining 

• Probability of success of a change 

• Probability of a conflict bet. changes
B1

B12

B123

B2

B3 B23 B13



● Logistic regression to train prediction models
○ Feature set includes 100+ hand-picked features
○ Prediction accuracy of 97%

Evaluating         and

Speculation

● dynamic features to re-adjust 
weights based on initial predictions

● # speculations succeeded
● # speculations failed

Change

● # affected targets
● # git commits
● # files changed
● status of pre-submit checks

Developer

● developer name
● employment proficiencies



Speculation

● dynamic features to re-adjust weights 
based on initial predictions

● # speculations succeeded
● # speculations failed

Revision 

● revision is a container for changes
● # changes submitted
● revert and test plans
● # Submit attempts made

Change

● # affected targets
● # git commits
● # files changed
● status of pre-submit checks

Developer

● developer name
● employment proficiencies

Features for Training ML Models



Conflict Analyzer

● So far, we assumed all changes potentially conflict with each other
○ Cannot commit in parallel

● What if changes can be proved to be independent?
○ Commit changes in parallel
○ Trim speculation space

● We use Conflict Analyzer to find independent changes



C1 C2

C3

Conflict graph for changes C1, C2, C3  where C1 and C2 are independent and conflict with C3.

Conflict Analyzer: Commit Changes in Parallel



C1 C2

C3

Insight: Changes C1 and C2 can be committed in parallel.

B1

B1.2.3

B2

B3
B1.3 B2.3

B1 fails

B1 succeeds

B2 succeeds

B2 fails

Conflict Analyzer: Commit Changes in Parallel



C1

C3C2

Conflict graph for C1, C2, C3  where C1 conflicts with independent changes C2 and C3.

Conflict Analyzer: Trim Speculation Space



Insight: Because C3 does not speculate on C2, # of possible builds for C3 reduces to 2.

B1

B1.3B2
B3 B1.2

C1

C3C2

B1 fails B1 succeeds

Conflict Analyzer: Trim Speculation Space



● Build system to detect if changes are 
independent

● Code partitioned into smaller entities 
called targets

● Every change affects a set of targets

Conflict Analyzer: Detecting conflicts at scale

main.exe

util.o main.o

util.c util.h main.c

Example build graph

T1

T2 T3



Two changes are independent if they affect a 
disjoint set of targets.

Detecting Conflicts: Intuition



Build Graph for H ⊕ C1

Target Y

Target X

Target Z

Build Graph for H ⊕ C2

Target Y

Target X

Target Z

Applyin
g C 1

 

Applying C
2  

Original Build Graph for H

Target Y

Target X

Target Z

Detecting Conflicts: 
Example



Original Build Graph for H

Target Y

Target X

Target Z

Build Graph for H ⊕ C1

Target Y

Target X

Target Z

Applyin
g C 1

 

Applying C
2  

Build Graph for H ⊕ C2

Target Y

Target X

Target Z

● C1 and C2 are conflicting

● But, the intersection of affected targets is empty!

Detecting Conflicts: 
Puzzle



{(x, 4), (y, 5)}  ∪  {(z, 6)}  ≠  {(x, 4), (y, 5), (z, 7)} 
Thus, C1 and C2 are conflicting!

Original Build Graph for H

Target Y

Target X

Target Z2

1

3

Build Graph for H ⊕ C1

Target Y

Target X

Target Z5

4

3

App
lyin

g C
1
 

Applying C2 

Build Graph for H ⊕ C2

Target Y

Target X

Target Z2

1

6

Build Graph for H ⊕ C1⊕ C2

Target Y

Target X

Target Z5

4

7

{(x, 4), (y, 5)}

{(z, 6)}

{(x, 4), (y, 5), 
(z,7)}

Applying C
1 ⊕ C

2  

Detecting Conflicts: 
Composition



• Intersection Approach
✖ Does not detect all kinds of conflicts

• Union Approach
✖ Determining conflicts for n changes requires n2 build graphs!

• Hybrid Approach
✔ Only 7.9% of changes cause a change to the build graph

• Union Graph Approach (details in paper)

Detecting Conflicts: Summary



Core Service

Submit Queue: Architecture Overview

API Service

Web UI CLI

Monorepo Build Controller
Schedule builds

Planner Engine

Select builds

Determine 

conflicts

Commit change’s patch

Submit Change

Push Changes

Speculation Engine

Speculation Graph

Conflict Analyzer

Conflict Graph



Evaluation

Questions
● How does Submit Queue performance compare against other strategies?

○ Queue, Speculate-all, Optimistic

● What is the impact of conflict analyzer?

Setup
● Implemented an Oracle that predicts outcome of a change correctly

○ All results normalized against the Oracle
● Ingested real changes into our system at different rates



Evaluation: Submit Queue Performance



Speculate-all suffers up to 15x slowdown compared to the Oracle.

Evaluation: Submit Queue Performance (P50)
Speculate-all



Evaluation: Submit Queue Performance (P50)
Speculate-all Optimistic speculation

Optimistic speculation performs better than speculate-all esp. under contention.



Speculate-all

Submit Queue has the best performance among all the approaches.

Optimistic speculation Submit Queue

Evaluation: Submit Queue Performance (P50)



Evaluation: Submit Queue Performance (P50)
Submit Queue

Performance matches Oracle’s performance under low contention



Evaluation: Submit Queue Performance (P99)
Submit Queue

P99 turnaround time is only 4x worse under extreme contention.
We don’t operate there typically in production.



● Oracle’s turnaround time improves by up to 50% with conflict analyzer.

● Benefit for SQ and Speculate-all steadily converges towards Oracle.

Evaluation: Impact of Conflict Analyzer

P95 Turnaround Time Impr. for 500 changes/hour



Submit Queue guarantees always-green master

• Probabilistic speculation powered by logistic regression to select builds 
that are likely to succeed, and execute them in parallel

• Conflict analyzer to commit independent changes in parallel, and trim the 
speculation space.

• Evaluated Submit Queue in production deployment



Thank you!


