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Monorepo is popular!

Single, shared repo hosting companies’ software assets

Advantages of a Monorepo [Ciera et al. @I CSE’18]
v/ Simplified Dependency Management
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Always master considered hard

e Monorepos handle a huge volume of commits every day

e Existing Cl workflows do not guarantee an always green master
- Too hard at scale

e Submit Queue guarantees an always-green master at scale
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Lifecycle of a change in monorepo
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Challenge: Concurrent conflicting changes
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Challenge: Concurrent conflicting changes

Alice Bob
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Example of a real conflict

@@ -287,6 +288,9 @@ + (void)registerProtocols
[currentGraph registerProtocol:@protocol(AnalyticsDeveloper)
withImplementation:analyticsManager];

DependencyProvider] *theProvider]= [DependencyProvider theProvider];
[theProvider setAnalytics:analyticsManager];

+ + + m.

@@ -377,10 +378,14 @@ + (void)registerProtocols

#pragma mark - Networking
[currentGraph registerProtocol:@protocol(NetworkingConfiguration)
- withFactory:”~1d {
- return [[NetworkingConfiguration alloc] init];
= 31

withImplementation:networkingConfiguration];

HTTPProviderg *theProvider [HTTPProvider theProvider];
[theProvider setrogger:togger];

+ + + +




How often conflicts happen?
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How often conflicts happen?
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# Concurrent & Potentially Conflicting Changes

Observation: Chances of a conflict 1 from 5% to 40% as #. of concurrent &
potentially conflicting changes 1
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Drawbacks of a red master

Delayed rollouts Hampered Productivity Complex rollbacks
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Keeping master green: Queue
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Alice, Bob, Carol enqueue changes they want to commit



Keeping master green: Queue
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C, is built and tested against mainline head (H).
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Keeping master green: Queue
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Build steps for H © C, succeed.



Keeping master green: Queue
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C, is committed and it becomes the head. C, is tested against it.
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Keeping master green: Queue
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Build steps for H © C,, fails and C, is rejected.
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Keeping master green: Queue
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\/ Guarantees an always green master by serializing changes
¢ Does not scale to 1000s of changes/day



Keeping master green: Batching changes

AR
Alice

C, and C, are batched and build steps are run.

UBER



Keeping master green: Batching changes

—
Alice

UBER

\/ Improves the throughput if batches succeed more often than not
2 Testing batches masks intermediate changes that fail
¢ Batches will fail often as the size of the batch increases

What happens when batches fail?



Keeping master green:

Guarantee serializability Provide reasonable SLAs
¢ |llusion of a single queue when committing ¢ Overheads should be short enough for
changes developers to trade speed for correctness!

¢ Git only offers serializability of patches

Challenge: how to do this at scale? (1000s of commits/day)
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Submit Queue:

Speculation Engine Conflict Analyzer

e Speculates on success/failure ¢ Determines independent
of changes changes

¢ Builds speculation graph ¢ Constructs conflict graph

UBER

Planner Engine
e Selects most valuable builds

from speculation engine
¢ Execute builds and commit

changes



Speculation Tree

3 C2 C1

C,, C,, C, - pending changes

17 72" 73
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Speculation Tree

2
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e B,: Build Steps for H ® C,



Speculation Tree

2aE

B, fails — C, rejected B, succeeds — C, commits

e

B,: Build Steps forH @ C, B, ,: Build C, against (H® C))

1. Precompute the outcome of committing C, under different realities
UBER 2. Commit or reject G, based on the outcome of B, and one of {B,, B, ,}



Speculation Tree

C, C,

B, fails — C, rejected B, succeeds — C, commits

Y

B, fails — C, rejected B, , fails — C, rejected

B, succeeds — C, commits ' / B, , succeeds — C, commits

Challenge: Which builds to run?
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Approach #1: Speculate Them All

Speculate on all possible outcomes equally
e Selects builds in a breadth-first order

_>C3}_>C2}_>C1|

Does not scale for 1000s of changes/day
e Need to run 2" builds in parallel to commit ‘n’ changes

Leads to substantial waste of resources
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Speculate Them All: Resource Wastage
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Speculate Them All:

If we select and execute builds whose outcomes are most likely

to be needed, then we require only n (out of 2") builds.

Challenge: Which ‘n’ builds are likely to be needed?
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Probabilistic Speculation

Pneeded

Be represents the prob. the result of the build B, is used to make to commit/reject C.
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Probabilistic Speculation

Pneeded 1

Root B, is always needed as is used to determine if C, can be committed
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Probabilistic Speculation

1 — ngcc

ngcc represents the prob. that change C1 succeeds individually
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Probabilistic Speculation

1 — ngcc

needed suce needed __ Aysucc
P32 =1 _Pol @ P — 1

ngcc represents the prob. that change C, succeeds individually
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Probabilistic Speculation

@ B, ,: Build C, against (H® C\)

succe conf
Pe,” —Pe, c,

Pg’"g, represents the prob. that 02 conflicts with C1
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Probabilistic Speculation

succe conf
Pe,” —Pe, c,

needed __ Aysucce succ conf
P, =Po - (Pe —Pcc,)
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Probabilistic Speculation: Summary

Choose most valuable builds by determining

* Probability of success of a change Pg“

* Probability of a conflict bet. changes 7g7%,
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Evaluating P& and »:7

e Logistic regression to train prediction models
o Feature set includes 100+ hand-picked features
o Prediction accuracy of 97%

Change Developer Speculation
e # affected targets e developer name e dynamic features to re-adjust
e # git commits e employment proficiencies weights based on initial predictions
e # files changed e # speculations succeeded
e status of pre-submit checks e # speculations failed
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Features for Training ML Models

UBER

Change

e # affected targets

e # git commits

e # files changed

e status of pre-submit checks

Revision

e revision is a container for changes
e # changes submitted

e revert and test plans

e # Submit attempts made

Developer

e developer name
e employment proficiencies

Speculation

e dynamic features to re-adjust weights
based on initial predictions

e # speculations succeeded

e # speculations failed



Conflict Analyzer

e So far, we assumed all changes potentially conflict with each other
o Cannot commit in parallel

e What if changes can be proved to be independent?

o Commit changes in parallel
o Trim speculation space

e We use Conflict Analyzer to find independent changes
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Conflict Analyzer:

Conflict graph for changes C,, C,, C, where C, and C, are independent and conflict with C,.
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Conflict Analyzer: Commit Changes in Parallel

B1succeeds Bzfans

B, fails

stucceeds

Insight: Changes C, and C, can be committed in parallel.
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Conflict Analyzer:

Conflict graph for C1, C2, C3 where C1 conflicts with independent changes C2 and CS.
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Conflict Analyzer:

B1 fails B, succeeds

Insight: Because C, does not speculate on C,, # of possible builds for C, reduces to 2.
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Conflict Analyzer:

e Build system to detect if changes are
independent

e (Code partitioned into smaller entities T
called targets

e Every change affects a set of targets util.c util.h main.c

Example build graph
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Detecting Conflicts:

Two changes are independent if they affect a
disjoint set of targets.
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Detecting Conflicts:

/ Original Build Graph for H \

Target Y Target Z

/

Target X

- /

UBER

o

Build Graph for He C,

Target Y

1

Target X

Target Z

~

/

-

Build Graph for He C,

Target Y

Target X

Target Z

~

/




Detecting Conflicts:

/ Original Build Graph for H \

Target Y Target Z

/

Target X

o

e C, and G, are conflicting

/

e But, the intersection of affected targets is empty!
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Detecting Conflicts:

Composition

Q Target Y

Target X

2

/ Original Build Graph for H \

q Target Z

WO
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G
Q

Applying C,

Build Graph for He C,

e Target Y

\
D ez

J

{(x,4), (v, 5)} U {(z,6)} = {(x,4),(y,5), (z, 7)}
Thus, C, and C, are conflicting!

UBER

{(x, 4), (v, 5)}

{z, 6)}



Detecting Conflicts:

¢ Intersection Approach
24 Does not detect all kinds of conflicts

e Union Approach
)X Determining conflicts for n changes requires n? build graphs!

e Hybrid Approach
v Only 7.9% of changes cause a change to the build graph

e Union Graph Approach (details in paper)
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Submit Queue:

: API Service

Submit Change
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Evaluation

Questions
e How does Submit Queue performance compare against other strategies?
o Queue, Speculate-all, Optimistic

e What is the impact of conflict analyzer?

Setup
e Implemented an Oracle that predicts outcome of a change correctly
o All results normalized against the Oracle
e Ingested real changes into our system at different rates
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Evaluation: Submit Queue Performance
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Evaluation:

Speculate-all

500 10.05 944 9.19 9.04
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Speculate-all suffers up to 156x slowdown compared to the Oracle.
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Evaluation:

Speculate-all
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Optimistic speculation performs better than speculate-all esp. under contention.
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Optimistic speculation
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Evaluation:

Speculate-all
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Optimistic speculation
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Submit Queue
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=
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5
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Submit Queue has the best performance among all the approaches.
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Evaluation: Submit Queue Performance (P50)

Submit Queue

5000°2:560 1.77 | 149 | 138 | 1.26
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g
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Performance matches Oracle’s performance under low contention
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Evaluation: Submit Queue Performance (P99)

Submit Queue

i 152 | 139 | 121

200 | 1.62 | 1.51 | 1.35
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P99 turnaround time is only 4x worse under extreme contention.
UBER We don’t operate there typically in production.



Evaluation:

—— SubmitQueue Single-Q —— Speculate-all

------- Oracle 0 Optimistic
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P95 Turnaround Time Impr. for 500 changes/hour

e Oracle’s turnaround time improves by up to 50% with conflict analyzer.

UBER e Benefit for SQ and Speculate-all steadily converges towards Oracle.



Submit Queue guarantees always- master

¢ Probabilistic speculation powered by logistic regression to select builds
that are likely to succeed, and execute them in parallel

e Conflict analyzer to commit independent changes in parallel, and trim the
speculation space.

e Evaluated Submit Queue in production deployment
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Thank you!

e P
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