Keeping Master Green at Scale

Sundaram Ananthanarayanan, Masoud Saeida Ardekani, Denis Haenikel,
Balaji Varadarajan, Simon Soriano, Dhaval Patel, Ali-Reza Adl-Tabatabai

(https://eng.uber.com/research/keeping-master-green-at-scale/)

Uber

https://eng.uber.com/research/keeping-master-green-at-scale/

Monorepo is popular!

Single, shared repo hosting companies’ software assets

Advantages of a Monorepo [Ciera et al. @I CSE’18]
v/ Simplified Dependency Management

(= 1

Multirepo
_ /

>
::>

v/ Improved Code Visibility

UBER

UBER

Google

£
Yy

Always master considered hard

e Monorepos handle a huge volume of commits every day

e Existing Cl workflows do not guarantee an always green master
- Too hard at scale

e Submit Queue guarantees an always-green master at scale

UBER

Outline

01 Why master is hard
02 Probabilistic Speculation
03 Conflict Analyzer

04 Evaluation

Lifecycle of a change in monorepo

< ,
Monorepo \

Change . .
_— = =
‘ Peer Review Developer
_— A
Developer T l
l ' Cl BUILD 4)
. Server * . -
ange
Change TEST :

oo ¢ . Revision

RESULT : G J

UBER

Challenge: Concurrent conflicting changes

UBER

Challenge: Concurrent conflicting changes

Alice Bob

UBER

Example of a real conflict

@@ -287,6 +288,9 @@ + (void)registerProtocols
[currentGraph registerProtocol:@protocol(AnalyticsDeveloper)
withImplementation:analyticsManager];

DependencyProvider] *theProvider]= [DependencyProvider theProvider];
[theProvider setAnalytics:analyticsManager];

+ + + m.

@@ -377,10 +378,14 @@ + (void)registerProtocols

#pragma mark - Networking
[currentGraph registerProtocol:@protocol(NetworkingConfiguration)
- withFactory:”~1d {
- return [[NetworkingConfiguration alloc] init];
= 31

withImplementation:networkingConfiguration];

HTTPProviderg *theProvider [HTTPProvider theProvider];
[theProvider setrogger:togger];

+ + + +

How often conflicts happen?

UBER

Chances of a conflict (%)

50

40

30

20

10

4 6 8 10 12 14

Concurrent & Potentially Conflicting Changes

16

How often conflicts happen?

50
40
30
20

10

Chances of a conflict (%)

2 4 6 8 10 12 14 16

Concurrent & Potentially Conflicting Changes

Observation: Chances of a conflict 1 from 5% to 40% as #. of concurrent &
potentially conflicting changes 1

UBER

Drawbacks of a red master

Delayed rollouts Hampered Productivity Complex rollbacks

| SuRE WisH
| mmw...

Keeping master green: Queue

i
Alice

master
@ @O .

UBER

Alice, Bob, Carol enqueue changes they want to commit

Keeping master green: Queue

A
Alice

master
@ @O .

C, is built and tested against mainline head (H).

UBER

Keeping master green: Queue

A
Alice

master
@ @O .

UBER

Build steps for H © C, succeed.

Keeping master green: Queue

A
Alice

3 4a
Bob

--@-Q---@-------- O----------- S

C, is committed and it becomes the head. C, is tested against it.

UBER

Keeping master green: Queue

A
Alice

3
Bob

--@-Q---©O-------- O----------- S

Build steps for H © C,, fails and C, is rejected.

UBER

Keeping master green: Queue

A
Alice

--@-Q---©O-------- O----------- S

UBER

\/ Guarantees an always green master by serializing changes
¢ Does not scale to 1000s of changes/day

Keeping master green: Batching changes

AR
Alice

C, and C, are batched and build steps are run.

UBER

Keeping master green: Batching changes

—
Alice

UBER

\/ Improves the throughput if batches succeed more often than not
2 Testing batches masks intermediate changes that fail
¢ Batches will fail often as the size of the batch increases

What happens when batches fail?

Keeping master green:

Guarantee serializability Provide reasonable SLAs
¢ |llusion of a single queue when committing ¢ Overheads should be short enough for
changes developers to trade speed for correctness!

¢ Git only offers serializability of patches

Challenge: how to do this at scale? (1000s of commits/day)

UBER

Submit Queue:

Speculation Engine Conflict Analyzer

e Speculates on success/failure ¢ Determines independent
of changes changes

¢ Builds speculation graph ¢ Constructs conflict graph

UBER

Planner Engine
e Selects most valuable builds

from speculation engine
¢ Execute builds and commit

changes

Speculation Tree

3 C2 C1

C,, C,, C, - pending changes

17 72" 73

UBER

Speculation Tree

2

UBER

e B,: Build Steps for H ® C,

Speculation Tree

2aE

B, fails — C, rejected B, succeeds — C, commits

e

B,: Build Steps forH @ C, B, ,: Build C, against (H® C))

1. Precompute the outcome of committing C, under different realities
UBER 2. Commit or reject G, based on the outcome of B, and one of {B,, B, ,}

Speculation Tree

C, C,

B, fails — C, rejected B, succeeds — C, commits

Y

B, fails — C, rejected B, , fails — C, rejected

B, succeeds — C, commits ' / B, , succeeds — C, commits

Challenge: Which builds to run?

UBER

Approach #1: Speculate Them All

Speculate on all possible outcomes equally
e Selects builds in a breadth-first order

>C3}>C2}_>C1|

Does not scale for 1000s of changes/day
e Need to run 2" builds in parallel to commit ‘n’ changes

Leads to substantial waste of resources

UBER

Speculate Them All: Resource Wastage

UBER

Speculate Them All:

If we select and execute builds whose outcomes are most likely

to be needed, then we require only n (out of 2") builds.

Challenge: Which ‘n’ builds are likely to be needed?

UBER

Probabilistic Speculation

Pneeded

Be represents the prob. the result of the build B, is used to make to commit/reject C.

UBER

Probabilistic Speculation

Pneeded 1

Root B, is always needed as is used to determine if C, can be committed

UBER

Probabilistic Speculation

1 — ngcc

ngcc represents the prob. that change C1 succeeds individually

UBER

Probabilistic Speculation

1 — ngcc

needed suce needed __ Aysucc
P32 =1 _Pol @ P — 1

ngcc represents the prob. that change C, succeeds individually

UBER

Probabilistic Speculation

@ B, ,: Build C, against (H® C\)

succe conf
Pe,” —Pe, c,

Pg’"g, represents the prob. that 02 conflicts with C1

UBER

Probabilistic Speculation

succe conf
Pe,” —Pe, c,

needed __ Aysucce succ conf
P, =Po - (Pe —Pcc,)
UBER

Probabilistic Speculation: Summary

Choose most valuable builds by determining

* Probability of success of a change Pg“

* Probability of a conflict bet. changes 7g7%,

UBER

Evaluating P& and »:7

e Logistic regression to train prediction models
o Feature set includes 100+ hand-picked features
o Prediction accuracy of 97%

Change Developer Speculation
e # affected targets e developer name e dynamic features to re-adjust
e # git commits e employment proficiencies weights based on initial predictions
e # files changed e # speculations succeeded
e status of pre-submit checks e # speculations failed

UBER

Features for Training ML Models

UBER

Change

e # affected targets

e # git commits

e # files changed

e status of pre-submit checks

Revision

e revision is a container for changes
e # changes submitted

e revert and test plans

e # Submit attempts made

Developer

e developer name
e employment proficiencies

Speculation

e dynamic features to re-adjust weights
based on initial predictions

e # speculations succeeded

e # speculations failed

Conflict Analyzer

e So far, we assumed all changes potentially conflict with each other
o Cannot commit in parallel

e What if changes can be proved to be independent?

o Commit changes in parallel
o Trim speculation space

e We use Conflict Analyzer to find independent changes

UBER

Conflict Analyzer:

Conflict graph for changes C,, C,, C, where C, and C, are independent and conflict with C,.

UBER

Conflict Analyzer: Commit Changes in Parallel

B1succeeds Bzfans

B, fails

stucceeds

Insight: Changes C, and C, can be committed in parallel.

UBER

Conflict Analyzer:

Conflict graph for C1, C2, C3 where C1 conflicts with independent changes C2 and CS.

UBER

Conflict Analyzer:

B1 fails B, succeeds

Insight: Because C, does not speculate on C,, # of possible builds for C, reduces to 2.

UBER

Conflict Analyzer:

e Build system to detect if changes are
independent

e (Code partitioned into smaller entities T
called targets

e Every change affects a set of targets util.c util.h main.c

Example build graph

UBER

Detecting Conflicts:

Two changes are independent if they affect a
disjoint set of targets.

UBER

Detecting Conflicts:

/ Original Build Graph for H \

Target Y Target Z

/

Target X

- /

UBER

o

Build Graph for He C,

Target Y

1

Target X

Target Z

~

/

-

Build Graph for He C,

Target Y

Target X

Target Z

~

/

Detecting Conflicts:

/ Original Build Graph for H \

Target Y Target Z

/

Target X

o

e C, and G, are conflicting

/

e But, the intersection of affected targets is empty!

UBER

o

Build Graph for He C,

Target Y Target Z

Target X

~

/

-

Build Graph for He C,

Target Y
Target X

Target Z

~

Detecting Conflicts:

Composition

Q Target Y

Target X

2

/ Original Build Graph for H \

q Target Z

WO

O~
G
Q

Applying C,

Build Graph for He C,

e Target Y

\
D ez

J

{(x,4), (v, 5)} U {(z,6)} = {(x,4),(y,5), (z, 7)}
Thus, C, and C, are conflicting!

UBER

{(x, 4), (v, 5)}

{z, 6)}

Detecting Conflicts:

¢ Intersection Approach
24 Does not detect all kinds of conflicts

e Union Approach
)X Determining conflicts for n changes requires n? build graphs!

e Hybrid Approach
v Only 7.9% of changes cause a change to the build graph

e Union Graph Approach (details in paper)

UBER

Submit Queue:

: API Service

Submit Change

Web Ul CL/

s —
Monorepo

UBER

o
Core Service I

Push Chm

Conflict Analyzer

4 N

Determine

))

k Conflict Graph /

conflicts

Schedule builds

Speculation Engine

[)

kSpeculation Graph /

A

' Select builds

Build Controller [«

R D

Commit change’s patch

|
|
|
|
|
|
|
|
|
|
|
|
|
Planner Engine :

Evaluation

Questions
e How does Submit Queue performance compare against other strategies?
o Queue, Speculate-all, Optimistic

e What is the impact of conflict analyzer?

Setup
e Implemented an Oracle that predicts outcome of a change correctly
o All results normalized against the Oracle
e Ingested real changes into our system at different rates

UBER

Evaluation: Submit Queue Performance

500

AN
S
S

#Changes / Hour
S
S

N
S
S

100

100 200 300 400 500
#Workers

UBER

Evaluation:

Speculate-all

500 10.05 944 9.19 9.04

= 400 10,69 980 9.75 942
=
§3OO 11.87 11.00 10.74 10.58
&
R 200 14.04 13.14 1290 12.72

Il 741 6.63 6.46 : 6.24)

100 200 300 400 500
#Workers

Speculate-all suffers up to 156x slowdown compared to the Oracle.

UBER

Evaluation:

Speculate-all

S0} 11.21 10.05 9.44

11.82 10.69 9.80 9.75

EiN
S
S

13.08 11.87 11.00 10.74

#Changes / Hour
S
S

1530 14.04 13.14 1290

[\
S
]

Iy 741 6.63 646 6.44

100 200 300 400 500
#Workers

Optimistic speculation performs better than speculate-all esp. under contention.

UBER

Optimistic speculation

500

I
S
S

#Changes / Hour
S
S

[\
S
(]

100 S

100 200 300 400 500
#Workers

Evaluation:

Speculate-all

10.05 944 9.19
10.69 9.80 @ 9.75

11.87 11.00 10.74

#Changes / Hour

14.04 13.14 12.90

6.63 646 6.44

200 300 400 500
#Workers

Optimistic speculation

500

N
=
(=]

#Changes / Hour
W
S

N
(=3
S

IO} 7.46

100 200 300 400 500
#Workers

Submit Queue

500 2.56 177 149 138 126
5400 257 187 159 147 142
=
§D300 252 187 144 131 @ 1.28
g :

5
F900 298 204 192 172 154
100 1.83 100 1.02 1.00 1.00
100 200 300 400 500
#Workers

Submit Queue has the best performance among all the approaches.

UBER

Evaluation: Submit Queue Performance (P50)

Submit Queue

5000°2:560 1.77 | 149 | 138 | 1.26

5 400 g 1.87 | 159 | 147 | 142
=
§D3OO< 252 187 144 131 1.28
g
53;)200- 298 204 192 172 154

100 1.83 1.00 1.02 1.00 1.00

100 200 300 400 500
#Workers

Performance matches Oracle’s performance under low contention
UBER

Evaluation: Submit Queue Performance (P99)

Submit Queue

i 152 | 139 | 121

200 | 1.62 | 1.51 | 1.35

245 183 154 1.53

(98]
S
S

#Changes / Hour

257 195 | 1.63 | 1.51

[\
S
S

1.65 146 138 | 1.25

100 200 300 400 500
#Workers

P99 turnaround time is only 4x worse under extreme contention.
UBER We don’t operate there typically in production.

Evaluation:

—— SubmitQueue Single-Q —— Speculate-all

------- Oracle 0 Optimistic

O
o

Turnaround Impr.
=
I

<
N

<
o

100 200 300 400 500
#Workers

P95 Turnaround Time Impr. for 500 changes/hour

e Oracle’s turnaround time improves by up to 50% with conflict analyzer.

UBER e Benefit for SQ and Speculate-all steadily converges towards Oracle.

Submit Queue guarantees always- master

¢ Probabilistic speculation powered by logistic regression to select builds
that are likely to succeed, and execute them in parallel

e Conflict analyzer to commit independent changes in parallel, and trim the
speculation space.

e Evaluated Submit Queue in production deployment

UBER

Thank you!

e P

Uber

