
Backfilling Flink Pipelines
using Iceberg Source
Flink Forward Global 2021

Sundaram Ananthanarayanan (Real Time Data Infrastructure)
Xinran Waibel (Personalization Data Engineering)

NETFLIX
FLINK FORWARD 2021

Agenda
➤ Needs for backfilling Flink Applications

➤ Existing approaches

➤ Iceberg Source

➤ Event ordering challenges

➤ Enabling Iceberg backfill

NETFLIX
FLINK FORWARD 2021

Flink Use Cases at Netflix

Personalization DE built various data systems that
power data analytics and ML algorithms.

Real-time Merched Impression (RMI) Flink App:

● Join Impression events with Playback events in
real-time to attribute plays to impressions.

● Use Cases: Take Rate, Evidence E/E1, etc.

● One of the largest stateful Flink apps at Netflix

Impression
Source

KeyBy

Join

Playback
Source

KeyBy

RMI Sink

[1] https://netflixtechblog.com/artwork-personalization-c589f074ad76

https://netflixtechblog.com/artwork-personalization-c589f074ad76

NETFLIX
FLINK FORWARD 2021

Challenges with Flink Ops

Flink apps can fail due to various reasons:

● Source / sink failures

● Dependent service failures

● Upstream data changes

After failures, we need to backfill to mitigate
downstream impact.

NETFLIX
FLINK FORWARD 2021

Challenges with Flink Ops

Possible types of backfilling needs:

● Correcting wrong data

● Backfilling missing data

● Bootstrapping state

NETFLIX
FLINK FORWARD 2021

Backfill Option #1: Replaying the Kafka Source

Methodology

The easiest way to backfill is by re-running the Flink job to reprocess
source events from the problematic period.

Challenges

👎 Kafka topics have limited retention.
👎 Troubleshooting failures can take hours or days.
👎 Increasing Kafka retention is very expensive. ($93M/year to retain 30

days of data generated by all apps, but some apps need > 30 days).

NETFLIX
FLINK FORWARD 2021

Can we store source Kafka events somewhere else?

Netflix’s Keystone1 platform provides a routing service that makes Kafka
events available in other storage systems, e.g. Iceberg (on top of S3).

[1] https://netflixtechblog.com/keystone-real-time-stream-processing-platform-a3ee651812a

https://netflixtechblog.com/keystone-real-time-stream-processing-platform-a3ee651812a

NETFLIX
FLINK FORWARD 2021

What is ?

Apache Iceberg1 is a table format for huge analytic datasets.

Features

● Schema evolution: supporting column updates.
● File pruning: based on partitions & column-level statistics.
● Time traveling: for reproducing results, plus version rollback.
● Cost effective2: 12x better compression rate and 98% less storage

cost compared to Kafka storage.

[1] https://iceberg.apache.org/ [2] Comparing Iceberg tables on top of Parquet files in S3 with Kafka storage in gp2 EBS.

https://iceberg.apache.org/

NETFLIX
FLINK FORWARD 2021

Kafka Events in Iceberg Table

Playback Iceberg Table

account_id show_id view_duration __metadata__

98524989 4236781 123 {kafka_ingestion_ts: ...}

87934298 8754782 45 {kafka_ingestion_ts: ...}

79403754 3648295 81 {kafka_ingestion_ts: ...}

...

Playback Kafka Events

{
"account_id":98524989,
"show_id":4236781,
"view_duration_sec": 123,
...

},
{

"account_id":87934298,
"show_title_id":8754782,
"view_duration_sec": 45,
...

},
{

"account_id":79403754,
"show_id":3648295,
"view_duration_sec": 81,
...

},
...

Can we backfill from Iceberg tables?

NETFLIX
FLINK FORWARD 2021

Backfill Option #2: Batch Pipelines reading from Iceberg

Methodology

Build and maintain a batch-based application (e.g. Spark job) that is
equivalent to the Flink application but reads from Iceberg tables.

Challenges

👎 Initial development of such Spark job can take days or weeks, incl.
data validation between two parallel applications.

👎 Continuous engineering efforts to keep the Spark app up to date.

NETFLIX
FLINK FORWARD 2021

Batch-driven Backfill Real-time Backfill

● Methodology: Rerun Flink app
before Kafka sources expire.

● Pros: Backfill using the same app.

● Cons: Increasing Kafka retention
is expensive. 💸

● Methodology: Maintain a
separate batch app equivalent
to the Flink app.

● Pros: Low data retention cost.

● Cons: Have to maintain two
applications in parallel. 😰

Can we combine the best things from both worlds?

Introducing
Iceberg Source!

NETFLIX
FLINK FORWARD 2021

● Provides a generic solution for backfilling

● Minimal code changes to add support

● Scales horizontally to backfill quickly

● Evaluated Iceberg Source Connector in production
deployment

Iceberg Source Connector for Backfilling Flink Applications

NETFLIX
FLINK FORWARD 2021

Mechanics of backfilling using the Iceberg Source

Use data from Iceberg during backfill

Sink

live

Semantics of the DataStream

Recent Past

ba
ck
fill

Distant Past

NETFLIX
FLINK FORWARD 2021

✔ Supports reading from Iceberg Tables

✔ Works for both bounded and continuously streaming
use-cases

❌ Does not support Flink use-cases where ordering can affect
results

❌ Was written using Flink’s old source interfaces.

Why not use the existing OSS Iceberg Source?

NETFLIX
FLINK FORWARD 2021

Let’s build the Iceberg
Source Connector based
on the Source API
introduced in FLIP-271.

How hard can it be?

[1] https://cwiki.apache.org/confluence/display/FLINK/FLIP-27%3A+Refactor+Source+Interface

https://cwiki.apache.org/confluence/display/FLINK/FLIP-27%3A+Refactor+Source+Interface

NETFLIX
FLINK FORWARD 2021

Building a FLIP-27 Source

Job
ManagerSplit Enumerator

Responsible for (a). discovering splits and (b). assigning them to readers.

Task
Managers

Split
Reader

Split
Reader

Split
Reader

Responsible for emitting records by reading splits assigned to them.

NETFLIX
FLINK FORWARD 2021

Building the Iceberg Source Connector

Iceberg Tables

Job
Manager

Task
Managers

Split Enumerator

Split
Reader

Split
Reader

Split
Reader

1. Request splits

2. Matching splits

3. Request Split4. Split Assigned

NETFLIX
FLINK FORWARD 2021

Talk is cheap.

Show me the code.

NETFLIX
FLINK FORWARD 2021

Building the Iceberg Source Connector

class IcebergSplitEnumerator extends SplitEnumerator {

 def start(): Unit = ???

 def handleSplitRequest(subtaskId: Int, requesterHostname: String): Unit = ???

 def addSplitsBack(splits: util.List[IcebergSplit], subtaskId: Int): Unit = ???

 def addReader(subtaskId: Int): Unit = ???

 def snapshotState(): List[IcebergSplit] = ???

 def close(): Unit = ???

}

NETFLIX
FLINK FORWARD 2021

Building the Iceberg Source Connector

class IcebergSplitEnumerator extends SplitEnumerator {

 def start(): Unit = ???

 def handleSplitRequest(subtaskId: Int, requesterHostname: String): Unit = ???

 def addSplitsBack(splits: util.List[IcebergSplit], subtaskId: Int): Unit = ???

 def addReader(subtaskId: Int): Unit = ???

 def snapshotState(): List[IcebergSplit] = ???

 def close(): Unit = ???

}

NETFLIX
FLINK FORWARD 2021

Building the Iceberg Source Connector

class IcebergSplitEnumerator extends SplitEnumerator {

 var pendingSplits: mutable.ListBuffer[IcebergSplit] = _

 def start(): Unit =

 pendingSplits =

 table

 .newScan()

 .filter(filterExpr) // filter only the table that falls in backfill period

 .planTasks()

 .iterator().asScala

 .map(toSplit)

 .to[ListBuffer]

 def handleSplitRequest(subtaskId: Int, requesterHostname: String): Unit = ???

}

NETFLIX
FLINK FORWARD 2021

Building the Iceberg Source Connector

class IcebergSplitEnumerator extends SplitEnumerator {

 var pendingSplits: mutable.ListBuffer[IcebergSplit] = _

 def start(): Unit = {...}

 def handleSplitRequest(subtaskId: Int, requesterHostname: String): Unit =

 if (pendingSplits.nonEmpty) {

 context.assignSplit(pendingSplits.head, subtaskId)

 pendingSplits = pendingSplits.tail

 } else {

 context.signalNoMoreSplits(subtaskId)

 }

}

NETFLIX
FLINK FORWARD 2021

There’s no free lunch!

NETFLIX
FLINK FORWARD 2021

Challenge 1: Applications assume ordering!

Playback
Source

keyBy

Sessionizer

Playback
Session Sink

session

session

session

Example Flink Application that converts playback events into playback sessions

NETFLIX
FLINK FORWARD 2021

Challenge 1: Applications assume ordering!

Playback
Source

keyBy

Sessionizer

Playback
Session Sink

@SpringBootApplication

class PlaybackSessionJob {

 @Bean

 def flinkJob(@Source("playback") playbackSrcBuilder:

SourceBuilder[PlaybackEvent]): FlinkJob =

 env => {

 val playbackSrc = playbackSrcBuilder.build(env);

 playbackSrc

 .keyBy(_.userId)

 .process(new Sessionizer)

 .addSink(new PlaybackSessionSink)

 }

 }

}

NETFLIX
FLINK FORWARD 2021

Challenge 1: Applications assume ordering!

Playback
Source

keyBy

Sessionizer

Playback
Session Sink

class Sessionizer extends KeyedProcessFunction {

 private var start: ValueState[Long] = _

 private var end: ValueState[Long] = _

 override def processElement(evt: PlaybackEvent, ...) {...}

 override def onTimer(timestamp: long, ...) {...}

}

NETFLIX
FLINK FORWARD 2021

Challenge 1: Applications assume ordering!

Playback
Source

keyBy

Sessionizer

Playback
Session Sink

class Sessionizer extends KeyedProcessFunction {

 private var start: ValueState[Long] = _

 private var end: ValueState[Long] = _

 override def processElement(evt: PlaybackEvent, ...) {

 // does this represent a new session?

 if (!start.value) {

 start.update(evt.timestamp)

 }

 // is this the latest event for the session?

 if (!end.value || evt.timestamp > end.value) {

 end.update(evt.timestamp)

 }

 // setup a probe to check for session completion in a minute

 ctx.timerService().registerEventTimeTimer(evt.timestamp + 60*1000);

 }

 override def onTimer(timestamp: long, ...) {...}

}

NETFLIX
FLINK FORWARD 2021

Challenge 1: Applications assume ordering!

Playback
Source

keyBy

Sessionizer

Playback
Session Sink

class Sessionizer extends KeyedProcessFunction {

 ...

 override def processElement(evt: PlaybackEvent, ...) {...}

 override def onTimer(timestamp: long, ...) {

 // emit session if no new events

 if (end.value && timestamp - end.value >= THRESHOLD) {

 output.collect(PlaybackSession(start.value, end.value))

 start.clear

 end.clear

 }

 }

}

NETFLIX
FLINK FORWARD 2021

Challenge 1: Applications assume ordering!

Playback
Source

keyBy

Sessionizer

Playback
Session Sink

class Sessionizer extends KeyedProcessFunction {

 private var start: ValueState[Long] = _

 private var end: ValueState[Long] = _

 override def processElement(evt: PlaybackEvent, ...) {

 // does this represent a new session?

 if (!start.value) {

 start.update(evt.timestamp)

 }

 // is this the latest event for the session?

 if (!end.value || evt.timestamp > end.value) {

 end.update(evt.timestamp)

 }

 // setup a probe to check for session completion in a minute

 ctx.timerService().registerEventTimeTimer(evt.timestamp + 60*1000);

 }

 override def onTimer(timestamp: long, ...) {

 // emit session if no new events

 if (end.value && timestamp - end.value >= THRESHOLD) {

 output.collect(PlaybackSession(start.value, end.value))

 start.clear

 end.clear

 }

 }

} 😞 If events were to be emitted in a different order during backfill, the results will not match.

NETFLIX
FLINK FORWARD 2021

Can we order the splits based on
their ingestion timestamps and
assign them in the exact same
order?

Represents a split that has Kafka

data from minutes 5 to 10.

NETFLIX
FLINK FORWARD 2021

Iceberg Tables

Job
Manager

Task
Managers

Split Enumerator

Split
Reader

Split
Reader

Split
Reader

1. Request splits

Dealing with ordering

2. Matching splitsT=0..5
T=10...

15
T=5..10 T=0..5 T=5..10

NETFLIX
FLINK FORWARD 2021

Iceberg Tables

Job
Manager

Task
Managers

Split Enumerator

2. Matching splits

Split
Reader

Split
Reader

Split
Reader

1. Request splits

3. Request Split

Dealing with ordering

T=0..5 T=10...
15T=5..10T=0..5 T=5..10

NETFLIX
FLINK FORWARD 2021

Iceberg Tables

Job
Manager

Task
Managers

Split Enumerator

2. Matching splits

Split
Reader

1. Request splits

3. Request Split

Dealing with ordering

T=0..5

T=10...
15T=5..10

T=0..5

T=5..10

4. Split Assigned

NETFLIX
FLINK FORWARD 2021

Iceberg Tables

Job
Manager

Task
Managers

Split Enumerator

2. Matching splits

Split
Reader

1. Request splits

3. Request Split

Dealing with ordering

T=10...
15T=5..10

T=0..5 T=0..5

T=5..10

4. Split Assigned

NETFLIX
FLINK FORWARD 2021

Iceberg Tables

Job
Manager

Task
Managers

Split Enumerator

2. Matching splits

Split
Reader

1. Request splits

3. Request Split

Dealing with ordering

T=10...
15

T=5..10
T=5..10

4. Split Assigned

Observation: Throughput is low because of the need to strictly order the splits.

NETFLIX
FLINK FORWARD 2021

Not all Flink Applications rely on
such strong ordering guarantees.
They can generally tolerate some
lateness.

pending splits

NETFLIX
FLINK FORWARD 2021

Job
Manager

Task
Managers

Split Enumerator

Split
Reader

Split
Reader

Split
Reader

3. Request Split

Dealing with ordering

T=0..5 T=10...
15T=5..10T=0..5 T=5..10

Assuming lateness of “10” minutes is okay.

watermark

IW=0
Represents the ingestion timestamp

up to which kafka data has been
fully processed

pending splits

NETFLIX
FLINK FORWARD 2021

Job
Manager

Task
Managers

Split Enumerator

Split
Reader

Split
Reader

Split
Reader

Dealing with ordering

T=0..5

T=10...
15

T=5..10T=0..5

T=5..10

watermark

IW=0

4. Splits Assigned

pending splits

NETFLIX
FLINK FORWARD 2021

Job
Manager

Task
Managers

Split Enumerator

Split
Reader

Split
Reader

Split
Reader

Dealing with ordering
T=10...

15

T=0..5 T=5..10T=0..5

T=5..10

watermark

IW=0

pending splits

NETFLIX
FLINK FORWARD 2021

Job
Manager

Task
Managers

Split Enumerator

Split
Reader

Split
Reader

Split
Reader

Dealing with ordering
T=10...

15T=5..10

watermark

IW=5 Indicates all kafka data up to 5
minutes has been processed.

pending splits

NETFLIX
FLINK FORWARD 2021

Job
Manager

Task
Managers

Split Enumerator

Split
Reader

Split
Reader

Split
Reader

Dealing with ordering

T=10...
15T=5..10

watermark

IW=5

4. Splits Assigned

✔ Improves the throughput for most Flink applications that can tolerate some lateness

NETFLIX
FLINK FORWARD 2021

● Kafka guarantees strict ordering per partition.

What about Kafka Ordering?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Partition 1

Partition 2

Partition 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Partition 1

Partition 2

Partition 3

NETFLIX
FLINK FORWARD 2021

● Kafka guarantees strict ordering per partition.

What about Kafka Ordering?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Partition 1

Partition 2

Partition 3

NETFLIX
FLINK FORWARD 2021

● Kafka guarantees strict ordering per partition.

What about Kafka Ordering?

NETFLIX
FLINK FORWARD 2021

● Kafka guarantees strict ordering per partition

● Most analytical use-cases (streaming-joins, sessionization)
use event-time semantics and are written with lateness in
mind.

If we need to guarantee Kafka ordering
❌ On the write path, data will have to be partitioned along

kafka partitioning schema producing too many small files.
❌ Will hurt backfilling performance.

What about Kafka Ordering?

NETFLIX
FLINK FORWARD 2021

Challenge 2: Dealing with multiple sources

Playback
Source

keyBy

Joiner

Sink

Impression
Source

keyBy

● One source can have significantly
way more data than the other.

● During backfill, this could lead to a
watermark skew resulting in state
size explosion.

● This can eventually lead to slow
checkpoints or checkpoint timeouts.

NETFLIX
FLINK FORWARD 2021

Iceberg Tables

Job
Manager

Task
Managers

Split
EnumeratorSRC1

Split
Reader

Split
Reader

Split
Reader

Challenge 2: Dealing with multiple sources

2. Matching splitsT=0..5
T=0..5

T=5..10 T=5..10
T=10...

15
Split

EnumeratorSRC2

T=0..5
T=0..5

T=5..10
T=5..10

T=10...15
T=0..5

T=0..5
T=5..10 T=5..10

T=10...15

NETFLIX
FLINK FORWARD 2021

Iceberg Tables

Job
Manager

Task
Managers

Split
EnumeratorSRC1

Split
Reader

Split
Reader

Split
Reader

Challenge 2: Dealing with multiple sources

2. Matching splits

T=0..5

T=0..5
T=5..10

T=5..10
T=10...

15
Split

EnumeratorSRC2

T=0..5
T=0..5

T=5..10
T=5..10

T=10...15

T=0..5

T=0..5
T=5..10 T=5..10

T=10...15

Source1 is progressing at 2x the rate as Source2.

NETFLIX
FLINK FORWARD 2021

Can we coordinate the enumerators
such that their ingestion
watermarks advance similarly?

pending splits

NETFLIX
FLINK FORWARD 2021

Job
Manager

Task
Managers

Split
EnumeratorSRC1

Split
Reader

Split
Reader

Split
Reader

Dealing with multiple sources

T=0..5 T=15...
20T=5..10 T=10...

15

watermark

IW=0

Split
EnumeratorSRC2

T=0..5 T=0..5 T=5..10T=5..10 T=10...
15T=0..5 T=5..10 T=10...

15T=0..5

Represents the ingestion timestamp
up to which all sources have been

fully processed

Assuming lateness of “10” minutes is okay.

pending splits

NETFLIX
FLINK FORWARD 2021

Job
Manager

Task
Managers

Split
EnumeratorSRC1

Split
Reader

Split
Reader

Split
Reader

Dealing with multiple sources

watermark

IW=0

Split
EnumeratorSRC2

T=0..5
T=5..10

T=0..5

T=0..5
T=0..5

T=15...
20

T=10...
15

T=5..10T=5..10 T=10...
15T=5..10 T=10...

15T=0..5

pending splits

NETFLIX
FLINK FORWARD 2021

Job
Manager

Task
Managers

Split
EnumeratorSRC1

Split
Reader

Split
Reader

Split
Reader

Dealing with multiple sources

watermark

IW=0

Split
EnumeratorSRC2

T=5..10T=5..10

T=0..5

T=15...
20

T=10...
15

T=5..10 T=10...
15

T=10...
15

pending splits

NETFLIX
FLINK FORWARD 2021

Job
Manager

Task
Managers

Split
EnumeratorSRC1

Split
Reader

Split
Reader

Split
Reader

Dealing with multiple sources

T=10..,
15

watermark

IW=5

Split
EnumeratorSRC2

T=5..10 T=10,..
15

T=10...
15

T=15...
20

NETFLIX
FLINK FORWARD 2021

Iceberg Source Overview

Iceberg Tables

Job
Manager

Task
Managers

Split Enumerator

Split
Reader

Split
Reader

Split
Reader

1. Request splits

2. Matching splits

4. Request Split
5. Split Assigned

Ingestion
Watermark

Tracker 3. New splits/
Completed Splits

6. watermark updates

NETFLIX
FLINK FORWARD 2021

Agenda
➤ Needs for backfilling Flink Applications

➤ Existing approaches

➤ Iceberg Source

➤ Event ordering challenges

➤ Enabling Iceberg backfill

NETFLIX
FLINK FORWARD 2021

Backfill RMI

Impression
Kafka Topic

Playback
Kafka Topic

Impression
Iceberg Table

Playback
Iceberg Table

RMI Flink Application

Production
Stack

Backfill Stack

RMI Output
Kafka Topic

RMI Output
Iceberg Table

NETFLIX
FLINK FORWARD 2021

@SpringBootApplication

class PersonlizationsStreamingApp {

 @Bean

 def flinkJob(

 @Source("impression-source") impressionSource: SourceBuilder[Record[ImpressionEvent]],

 @Source("playback-source") playbackSource: SourceBuilder[Record[PlaybackEvent]],

 @Sink("summary-sink") summarySink: SinkBuilder[ImpressionPlaySummary]) {...}

 @Bean

 def liveImpressionSourceConfigurer(): KafkaSourceConfigurer[Record[ImpressionEvent]] =

 new KafkaSourceConfigurer("live-impression-source", KafkaCirceDeserializer[ImpressionEvent])

}

Setting up a Flink Application for Backfilling: Example

NETFLIX
FLINK FORWARD 2021

@SpringBootApplication

class PersonlizationsStreamingApp {

 @Bean

 def flinkJob(

 @Source("impression-source") impressionSource: SourceBuilder[Record[ImpressionEvent]],

 @Source("playback-source") playbackSource: SourceBuilder[Record[PlaybackEvent]],

 @Sink("summary-sink") summarySink: SinkBuilder[ImpressionPlaySummary]) {...}

 @Bean

 def liveImpressionSourceConfigurer(): KafkaSourceConfigurer[Record[ImpressionEvent]] =

 new KafkaSourceConfigurer("live-impression-source", KafkaCirceDeserializer[ImpressionEvent])

 @Bean

 def backfillImpressionSourceConfigurer(): IcebergSourceConfigurer[Record[ImpressionEvent]] =

 new IcebergSourceConfigurer(

 "backfill-impression-source",

 Avro.deserializerFactory[ImpressionEvent])

}

Setting up a Flink Application for Backfilling: Example

NETFLIX
FLINK FORWARD 2021

@SpringBootApplication

class PersonlizationsStreamingApp {

 @Bean

 def flinkJob(

 @Source("impression-source") impressionSource: SourceBuilder[Record[ImpressionEvent]],

 @Source("playback-source") playbackSource: SourceBuilder[Record[PlaybackEvent]],

 @Sink("summary-sink") summarySink: SinkBuilder[ImpressionPlaySummary]) {...}

 @Bean

 def liveImpressionSourceConfigurer(): KafkaSourceConfigurer[Record[ImpressionEvent]] =

 new KafkaSourceConfigurer("live-impression-source", KafkaCirceDeserializer[ImpressionEvent])

 @Bean

 def backfillImpressionSourceConfigurer(): IcebergSourceConfigurer[Record[ImpressionEvent]] =

 new IcebergSourceConfigurer(

 "backfill-impression-source",

 Avro.deserializerFactory[ImpressionEvent])

}

Setting up a Flink Application for Backfilling: Example

Note: In-memory representation of the Iceberg source is consistent with the Kafka Source.

NETFLIX
FLINK FORWARD 2021

Setting up a Flink Application for Backfilling: Example

nfflink:

 job.name: rmi-app

 connectors:

 sources:

 impression-source:

 type: dynamic

 selected: live-impression-source

 candidates:

 - live-impression-source

 - backfill-impression-source

 live-impression-source:

 type: kafka

 topics: impressions

 cluster: impressions_cluster

 backfill-impression-source:

 type: iceberg

 database: default

 table: impression_table_name

 max_misalignment_threshold: 15min

Config changes to support backfilling.

NETFLIX
FLINK FORWARD 2021

Easily switch between Kafka
and Iceberg sources via UI

Specify the time window
to backfill via UI

Choose one or more regions

Backfill RMI

NETFLIX
FLINK FORWARD 2021

Backfill RMI

Results

● Processing 24 hours of data takes ~ 5 hours
● Backfill output matches 99.9% with Prod

Lessons Learned

● Backfilling window depends on Flink logic
● Set max_misalignment_threshold based on event ordering

requirements
● Backfilling job configs need tuning (separately from prod job)

Benefits of Iceberg Source

👏 Use the same Flink app for backfilling

👏 Easy to set up

👏 Backfill large historical data quickly

👏 Cost Efficient ($2M/yr in Iceberg v.s
$93M/yr in Kafka)

NETFLIX
FLINK FORWARD 2021

NETFLIX
FLINK FORWARD 2021

Future Work

● Provide support for continuously Streaming Iceberg Source for
applications that do not require < second latency.

● Hybrid Streaming - Batch Source [FLIP-150] to bootstrap
applications with historical data and continue with streaming.

● Strict Kafkaesque ordering for CDC apps

Thank You.

Contacts
Sundaram Ananthanarayanan (Linkedin)
Xinran Waibel (Linkedin)

https://www.linkedin.com/in/sundaram-ananthanarayanan-97b8b545/
https://www.linkedin.com/in/xinranwaibel/

